NPS-MA-97-001

NAVAL POSTGRADUATE SCHOOL
Monterey, California

On Satellite Umbra/Penumbra Entry
and Exit Positions

199702106172

by

Beny Neta
David Vallado, LtCol

January 1997

Approved for public release; distribution is unlimited.

Prepared for: Office of Naval Research
Monterey, CA 93943

and

Phillips Laboratory

Kirtland AFB, NM 87117 Dt Qiuns ramy veonn o
LL0 %UAM‘RY MVUE&”EG?ED 1




NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943

Rear Admiral M. J. Evans Richard Elster
Superintendent Provost

This report was prepared in conjunction with research conducted for Office of Naval Research and funded by
Phillips Laboratory.

Reproduction of all or part of this report is authorized.
This report was prepared by:

Beny Neta
Professor of Mathematics

i

Lt Col (sel) David Vallado
Orbital Analyst

Reviewed by:

1 e

WALTER M. WOODS DAVID W. NETZER
Chairman Associate Provost and Dean of Research




Form approved

REPORT DOCUMENTATION PAGE
OMB No 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
llection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
January 1997 Technical Report: 1 July 1996 - 31 December 1996
4. TITLE AND SUBTITLE 5. FUNDING

On Satellite Umbra/Penumbra Entry and Exit Positions

6. AUTHOR(S) FMBD-96-560-NPS

Beny Neta and David Vallado

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
Naval Postgraduate School
Monterey, CA 93343-5000 NPS-MA-97-001
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
: AGENCY REPORT NUMBER
Office of Naval Research and Phillips Laboratory
Monterey, CA 93943 Kirtland AFB, NM 87117

11. SUPPLEMENTARY NOTES

The views expressed in this report are those of the author and do not reflect the official policy or position of the Department of Defense
or the United States Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words.)

The problem of computing Earth satellite entry and exit positions through the Earth’s umbra and penumbra, for satellites in elliptical orbits, is
solved without the use of a quartic equation. A condition for existence of a solution is given. This problem is related to perturbation force resulting
from solar radiation pressure.

14. SUBJECT TERMS 15. NUMBER OF
PAGES
Umbra/penumbra, Halley’s method, Newton’s methods 24 pages

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE . OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified SAR

NSN 7540-01-280-5800 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std 239-18



On Satellite Umbra/Penumbra Entry
and Exit Positions

Beny Neta*

Naval Postgraduate School
Department of Mathematics
Code MA/Nd
Monterey, CA 93943

Lt Col (sel) David Vallado
Orbital Analyst

Phillips Laboratory
Kirtland AFB, NM 87117

December 19, 1996

*Author to whom all correspondence should be addressed.

1



Abstract

The problem of computing Earth satellite entry and exit positions through
the Earth’s umbra and penumbra, for satellites in elliptical orbits, is solved
without the use of a quartic equation. A condition for existence of a solution
is given. This problem is related to perturbation: force resulting from solar
radiation pressure.

Keywords: umbra/penumbra, Halley’s method, Newton’s method

1 Introduction

The problem of computing Earth satellite (in elliptical orbits) entry and exit
positions through the Earth’s umbra and penumbra is a problem dating from
the earliest days of the space age, but it is still of the utmost importance to
many space projects for thermal and power considerations (Mullins, 1991).
It’s also important for optical tracking of a satellite. To a lesser extent, the
satellite external torque history and the sensor systems are influenced by the
time the satellite spends in the Earth’s shadow.

full light

penumbra

penumbra

full light

Figure 1: Earth umbra and penumbra



The umbra is the conical total shadow projected from the Earth on the
side opposite the Sun. In this region, the intensity of the solar radiation
is zero. The penumbra is the partial shadow between the umbra and the
full-light region (see figure 1). In the penumbra, the light of the Sun is
only partially cut off by the Earth, and the intensity is between 0 and 1.
All textbooks discussing the problem (e.g. Geyling and Westerman, 1971,
and Escobal, 1985) even the recent work by Mullins (1991), suggest the
use of a quartic equation analytic solution. Because the quartic is a result
of squaring the equation of interest, one must check all four solutions and
discard the spurious ones. In this paper, we examine solving the original
equation numerically. We will give a condition for the existence of a solution,
discuss the initial guess for the iterative scheme, and compare the complexity
of the two schemes (ours versus the analytic solution of the quartic).

The shadow problem has been solved in the past by assuming a cylindri-
cal shadow behind the Earth (Geyling and Westerman, 1971), or a conical
shadow which is more realistic (Fixler, 1964, and Mullins, 1991). The nu-
merical solution will be discussed for each case.

2 Problem Formulation

In this section, we formulate the problem using both cylindrical and conical
shadow geometry. We’ll see that the solution method is different in the two
cases.

2.1 Cylindrical Shadow

In this case the orbital geometry is given in figure 2 (Escobal, 1985, p. 157,
or Vallado, 1996, p.521).

The analysis given by Escobal (1985) and Vallado (1996) show that the
true anomaly, v, at entrance and exit into the shadow satisfies the following
equation:

R%(1+ ecosv)? + p*(By cosv + B, sinv)? —p? =0 (1)

where Rg is the radius of the Earth (~ 6378.136 km), Ry is the Sun’s
position vector (~ 696000 km), p is semi-parameter, and e is the eccentricity.
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Figure 2: Cylindrical Shadow

The remaining classical orbital elements are inclination, i, longitude of the

ascending node, (), and the argument of perigee, w. The parameters 8; and
B2 are given by ’

Ry -P
b=

Ro-Q
b= =5

The unit vectors P and ( are defined by

coswcos ) — sinwsin ) cos ¢
P= cos wsin ) + sin w cos N cos ¢
sinwsinz
—sinwcos ) — coswsin ) cos ¢
Cj: l: —sinwsinﬂ+coswcosﬂcosiJ
coswsinz

For circular orbits and if 2 = 0, 7, P should be redefined in a convenient
manner (see Escobal, 1985). '

2.2 Conical Shadow

In this case, one must distinguish between umbra (full shadow) and penumbra
(partial shadow) regions. In the umbra case, we must solve a system of two
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nonlinear equations (see Mullins, 1991). The first equation models the surface
of the shadow cone

F(Zgh»Ysh» 2sh) = ygh + Z:h —(d—zg, ) tan’ o =0 2)

where d is the distance from center of the Earth to apex of shadow cone
(~ 1.3836-10° km), and o is half angle of that cone (~ .26412°). The second
equation describes the orbit

o= (2 (B s o

where b = av/1 — e2. Because the two equations are not in the same coordi-
nate system, we take 7y, and rotate it to get 7. The transformation is given

by
7o = ROT3(w) ROT1(i) ROT3(Q) ROT1(~€) ROT3(x — L) 7y,

where € is the mean obliquity of the ecliptic (~ 23.5° ), L is the ecliptic
longitude of the Sun, and ROT1(¢), ROT3(¢) are rotations about the z, z
axis (respectively) by ¢. If we denote the transformation matrix by A, then

Zgh = @11%o + d21Y0 (4)
Ysh = @12%0 + a22Y0 (5)
Zgh = @13%0 + @23Y0- (6)

Notice that zo is zero at the intersection of the two equations (2)-(3). Because
only solutions with z_} > 0 are acceptable(see figure 2), we must satisfy

a11Zo + anyo > 0. (7)
Substituting (4)-(6) into (2), we get the following equation
Fi(zo,%0) = a0ty + a9 + 20270yo + 030 + auyo — d* tan’ o = 0. (8)

where '
a = a’, + a?, — a2, tan’ o

o = a2, +aZ, — a3, tan’ o
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0 = @130 + 013023 — a11051 tan’ o
Qi3 = 2a11dtan2 (o
ay = 2asdtan? o
This equation should be solved with (3) and (7).

Mullins (1991) suggests solving (8) subject to (3) and (7), using a quartic
equation for z and then checking each of the four solutions with solutions of a
quadratic equation for y as a function of z. Mullins admits: “The coefficients
(of the quartic) are messy functions of the angles shown ...”. In section 7,

we show a better way to solve the problem without going through a quartic
equation and thus without computing these “messy coefficients.”

In the penumbra case, Mullins (1991) shows that (2) becomes
F(msha Ysh zsh) = y:h + Zgh — (d, + :Bsh)2 tan2 o = 0

where d’ is the distance from the center of the Earth to the apex of the cone
between the Sun and the Earth (~ 1.35849 - 10° km), and o’ is half angle
of that cone (~ 0.26901°). This leads to an equation similar to (8) to solve.
The idea presented in section 7 will be used here too.

3 Complexity of Quartic Solution

The problem (for cylindrical shadow) can be solved using the quartic equation
Agcos* v+ Ay cos® v + Ay cos? v + Azcosv + Ay = 0 (9)

analytically and then rejecting the spurious roots based on the following
conditions: The physical solution, should satisfy the original equation and

Bicosv + Bysinv < 0.

The coeflicients of the quartics are given by:



A1=4

4 2 2
) oy (k) (-m)-2(%e) (1 -y

As = 4<&’i)4e—4(&@)2(1—ﬁ3)e
P p

Rg\* Rg\’ 2 2)?
P NS S
p P
If the work is done economically, one finds that the number of multipli-
cations and divisions required to compute the coefficients of the quartic is
38. To find the solution of the quartic requires 64 multiplications/division, 5
square roots, 4 cube roots, 1 arccosine and 3 cosine evaluations. The cosine
and arccosine evaluations are required only if the ‘discriminant is negative,
see Abramowitz and Stegun (1965).

4 Numerical Solution for Cylindrical Shadow

To solve the shadow equation (1) numerically, we can use either bracketing
or fixed-point type methods. In the following, we describe only Newton’s
and Halley’s methods which are of fixed-point type. It is first suggested to
check the existence of a solution. First, rewrite ( 1) as:

f(z)=Ac®+ Bz +CzV1 =22+ D=0 (10)
where z = cosv. In order to have a solution, we must have
f(=1fa)<o. (11)
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Clearly equality means that cosv is £1. The strict inequality in (11) is
equivalent to

Rs \" _ Ry \’
1— | —— 1—|———
(wa) > 971 (s
Note that there is no condition on £,.

4.1 Newton’s Method

To solve a nonlinear equation f(z) = 0 via Newton’s method, we require an
initial guess zo. Then an iterative procedure can be followed to construct a
sequence of estimates z,, by
z
a:n.,_1=:z:n——M n=01,...

f(zn)’

The iterative process converges if either
|f(za)l < Toly

or
|Zns1 — 2| < Tol,

for given tolerances. In either case we take z,4 as the root. The convergence
rate is quadratic. If the iterative process doesn’t converge in a certain number
of iterations, we stop. In this case we suggest bracketing methods. Newton’s
method will diverge if we hit a point where f'(z) is very small.

4.2 Halley’s Method

Halley’s method converges faster (third order compare to second order for
Newton). The iterative process is

(=)
S e i)
2f"(zy)

n=20,1,...



4.3 Bracketing Methods

In general, bracketing methods are slower, but they are safer, in the sense

that convergence is guaranteed. For example, the bisection method starts

with an initial interval containing the root, [aq,bo). The process halves the

interval at every step. After n iterations, the length of the interval containing
—ao

the root is . Therefore, the number of iterations required depends on

the length of the initial interval and the tolerance.

This simplistic method can be modified by using Regula Falsi (solving a
linear equation at every step) or modified Regula Falsi (which is useful when
the curvature of f is large enough.)

For example, we have solved (10) with A = 1, B = -2, C = 1, and
D = 1. Newton’s method required 5 iterations for convergence to 10719,
Halley’s method required 4 iterations and the bisection methods used 31 it-
erations. If we require a more realistic accuracy, let say 10~%, then Halley’s
method requires 3 iterations, Newton’s requires 4 iterations and the brack-
eting methods uses 19.

5 Initial Guess

Because the problem is to solve for cos v, we know that the solution, if it ex-
ists, must lie in the interval [~1, 1]. For bracketing methods we suggest using
this interval, and for Newton’s and Halley’s method, we take the midpoint
of the interval, i.e. zo = 0.

For subsequent crossings through the shadow, we can take z, to be the
previous solution.

6 Complexity of Numerical Solution

All iterative procedures require function evaluations, and some will require
the evaluation of the first and maybe second derivative. The evaluation of
the function requires 4 multiplications/divisions (using nested multiplication)
and 1 square root. The evaluation of the first derivative is accomplished by 7
multiplications/divisions and 1 square root. The second derivative requires
8 multiplications/divisions and 1 square root. For one iteration of Halley’s
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method we need 23 multiplications/divisions and 3 square roots. For one
iteration of Newton’s method we need 12 multiplications/divisions and 2
square roots. For the bisection method we need 5 multiplications/divisions
and 1 square root. If we multiply the number of iterations by the cost per
iteration we find that Newton’s method is the cheapest with 48 multipli-
cations/divisions and 8 square roots, then Halley’s method with 69 mul-
tiplications/divisions and 9 square roots, then bisection with 95 multipli-
cations/divisions and 5 square roots. In comparison, Newton’s method is -
cheaper than solving the quartic and it doesn’t require checking for spurious
roots. Even Halley’s method is competitive with the analytic solution of the
quartic. We summarize the results in a table.

|| operation | mult./div. | sq. root | cubic root | trig. func. | number iter.
Newton 48 8 0 0 4
Halley 69 9 0 0 3
Bisection 95 5 0 0 19
Quartic 102 5 4 2% 0

Table 1: Operation count

7 Numerical Solution for Conical Shadow

In this section, we describe a numerical method to solve (8) and (3) subject
to (7). We suggest guessing an initial approximation z, and use (3) to get

the corresponding yo
Yo = £bV1 — €2. (12)

Because (3) is quadratic, we offer here the correct sign to satisfy (7). Note
that (7) describes a half plane whose boundary is a line in figures 3 and 4.

vo = — Lz, (13)
a2

*This doesn’t include checking for spurious roots.
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a21<0

region of interest

az2i>0

Figure 3: a1; and ay; have the same sign

y

region of interest

a21>0

a21<0

Figure 4: a;; and ay; have opposite signs
Therefore the sign of the radical in (12) is the same as the sign of as;.
We now rewrite (8) as

Fi(z,y) = Az® + By(z)’ + Cay(z) + Dz + Ey(a) + F
with (using (3))

y(r) = £V1 — 62\/a2 — (z + ae)?
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For Newton’s method, we need F] and y’ which are given by
Fi(z,y) = 2Az + 2By(z)y'(z) + Cy(z) + Czy'(z) + D + Ey'(z)

and
(1 —€e?)(z + ae)

y(z) =7
Now the iterative procedure is as follows

Fl(xmyn)
Fll(xmyn)

Yny1 = V1 — 62\/(12 — (Zn41 + ae)?

Remember to choose the sign appropriately.

Tyl = Ty — n=12...

8 Conclusions

In this paper, we suggest the use of iterative techniques to compute the
entry and exit positions through the Earth’s umbra and penumbra. We also
show how to choose the initial guess for the first and subsequent crossings.
Several iterative methods for the solution of the problem are compared to the
currently used one. Newton’s method converges fast especially at subsequent
crossings, because the initial guess is close enough.
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Appendix A

This section provides two FORTRAN subroutines using Newton’s method

to solve both the cylndrical and cone shadows.

(¢}

4]

o 0 0 0

O 0 00

Newton’s algorithm for the cylindrical shadow

real*8 xn,fn,xn1,fpn,tol,tolf
real*8 a0,al,a2,a3
integer indx,mxindx

max number of iterations
mxindx=15
convergence tolerance on consecutive iterates

tol=1.e-18
tol=1.e-6

convergence tolerance on closeness of function to zero

tolf=1.e-18
tolf=1.e-6
al0=1.
al=-2.
a2=-1.
a3=1.

initial guess

xn=0.
indx=0

14



(¢]

0

(e]

10

20

30
40

[}
Cc
C

continue
call f(a0,al,a2,a3,xn,fn,fpn)

is function close to zero at xn?
if(dabs(fn).le.tolf) go to 20
compute next iterate

xnl=xn-fn/fpn
znl=dsqrt(1.d0-xni*xn1)
indx=indx+1

print *,indx,xn,xnl,znl,fn

check for closeness of iterates

if (dabs(xn1-xn).le.tol) go to 10
xn=xnl

check if max number of iterates exceeded

if (indx.ge.mxindx) go to 30
. go to 5
print *,’ convergence iterates close’,xn,xnl
go to 40
print *,° convergence function close to zero’,xn,fn
go to 40
print *,’ no convergence - max number of iterates’
stop
end
subroutine f(a0,al,a2,a3,x,y,yp)
real*8 x,y,yp
real*8 a0,al,a2,a3

evaluate the function
z=dsqrt (1.d0-x*x)

15




0o 0

000 oo 00 o0 o0

0O 0

y=a0*x**x2+al*x+a2*x*z+a3
evaluates the first derivative
yp=2.*a0*x+al+a2%z-a2*x/z*x

return
end

Newton’s algorithm for the cone shadow
real*8 xn,yn,fn,xnl,ynl,ypn,fpn,tol,tolf
real*8 all,al2,al13,a21,a22,a23
real*8 a,b,c,d,e,f
real*8 aa,ee,e2l,e2ls,ae,t2s,sigma,dd,dt2s,dt2s2
real*8 pi,ax,by,cx
integer indx,mxindx
pi=4.d0*datan(1.40)
max number of iterations
mxindx=35

convergence tolerance on consecutive iterates

tol=1.e-18
tol=1.e-6

convergence tolerance on closeness of function to zero

tolf=1.e-18
tolf=1.e-6

coefficients of transformation matrix

16



o o0 o0 00

a1l=.05

al2=.05
al3=.05
a21=.05
a22=.05
a23=.05

sigma half angle of shadow cone
sigma=.26412%pi/180.
t2s=dtan(sigma)**2
dd distance from center of Earth to apex of shadow cone
dd=1.3836*%10%*6
dt2s=dd*t2s
ee eccentricity
ee=.001
aa semi major axis
aa=10000000
e2l=1-eex*ee
e21s=dsqrt(e21)
ae=aa*ee
print *,’ aa ee ’,aa,ee
print *,’ e21 e2ls ae ’,e21,e2ls,ae

initial guess
xn=0.
yn=aa¥e2l
print *,’ xn yn initially ’,xn,yn
initialize counter of iteration
indx=0
compute coefficients of equation to solve

a=al2*al2+al3*al3-all*all*t2s
b=a22*%a22+a23+%a23~a21*a21*t2s

17




¢]

0

10

20

30

c=2.*(al2%*a22+a13*a23-al1*a21*t2s)
dt2s2=2%dt2s

d=dt2s2*all

e=a2l1*dt2s2

f=-d*dt2s

print *,” abcdef ’,a,b,c,d,e,f

continue
call fcn(a,b,c,d,e,f,ae,e21,ax,by,cx,xn,yn,ypn,fn,fpn)
print *,’ indx ypn fn fpn ’,indx,ypn,fn,fpn

is function close to zero at xn?
if(dabs(fn).le.tolf) go to 20
compute next iterate

xnl=xn-fn/fpn v
yni=e21s*dsqrt(aa*aa-(xni+ae)**2)
indx=indx+1

print *,indx,xn,xnl,yn,ynl,fn

check for closeness of iterates

if(dabs(xnl-xn).le.tol) go to 10
xn=xnl
yn=ynil

check if max number of iterates exceeded

if (indx.ge.mxindx) go to 30

go to 5 '

print *,’ convergence iterates close’,xn,xnl

go to 40

print *,’ convergence function close to zero’,xn,fn
go to 40

print *,’ no convergence - max number of iterates’

18



40

0O

0

stop

end

subroutine fcn(a,b,c,d,e,f,ae,e21,ax,by,cx,x,y,yp,fn,fpn)
real*8 x,y,yp,fn,fpn

real*8 a,b,c,d,e,f,ax,by,cx,ae,e21

evaluate the function

ax=a*x
by=b*y
CX=C*X
fn=ax*x+by*y+cx*y+d*x+exy+f

evaluates the first derivative
yp=-e21*(x+ae)/y
fpn=2.*ax+2.*by*yp+cky+cx*yp+d+exyp

return
end
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